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The Rank One Mixed p Problem and 
"Kharit onov-Type" Analysis 

Peter M. Young 

Electrical Engineering, 116-81 
California Institute of Technology 

Pasadena, CA 91125, U.S.A. 

Abstract  

The general mixed p problem has been shown to be NP hard, so that the exact solution of 
the general problem is computationally intractable, except for small problems. In this paper we 
consider not the general problem, but a particular special case of this problem, the rank one 
mixed p problem. We show that for this case the mixed p problem is equivalent to its upper 
bound (which is convex), and it can in fact be computed easily (and exactly). This special case 
is shown to be equivalent to the so called "affine parameter variation" problem (for a polynomial 
with perturbed coefficients) which has been examined in detail in the literature, and for which 
several celebrated "Kharitonov-type" results have been proven. 

1 Introduction 

It is now known that the general mixed p problem is N P  hard, and this strongly suggests that the 
exact solution of the general problem is computationally intractable, except for small problems [3]. 
In this paper we consider not the general problemi hut: a particular specid case of this preblem, 
the rank one mixed p problem. The rank one mixed p problem is that of computing pK(M) for 
M = uv* with u , v  E 43". 

Note that imposing the condition that M be a dyad is a strong restriction, and this will limit 
the applicability of this analysis to real engineering applications. The reason for our interest in 
this particular problem is that it turns out that a special case of the rank one mixed p problem is 
equivalent to the so called "affine parameter variation" problem (for a polynomial with perturbed 
coefficients) which has been examined in detail in the literature, and for which several celebrated 
"Kharitonov-type" results have been proven. These results provide exact robust stability tests for 
such problems, with respect to real parametric uncertainty (see [12] and the references therein). 

It will be seen that this special p problem does indeed avoid the N P  hardness issues of the 
general problem. We will show that for such problems p equals its upper bound, which is a convex 
problem. In fact it is not even necessary to solve a convex optimization problem, and we are able 
to obtain a complete solution to the rank one problem, in terms of quantities which are easily 
computed. This solution also provides us with the means to examine the properties of the rank 
one problem, and arrive at a number of interesting results (for example an "edge" result holds for 
rank one mixed p problems). 



2 Not at ion and Preliminaries 

The notation used here is fairly standard and is essentially taken from [6] and 2151. For any square 
complex matrix M we denote the complex conjugate transpose by M*. The largest singular value 
and the structured singular value are denoted by P(M) and pK(M) respectively. The spectral 
radius is denoted p(M) and pR(M) = max{lXI : X is a real eigenvalue of M),  with pR(M) = 0 
if M has no real eigenvalues. For a Hermitian matrix M ,  then X(M) and Xmin(M) denote the 
largest and smallest (real) eigenvalues respectively. For any complex vector x, then x* denotes the 
complex conjugate transpose and 1x1 the Euclidean norm. We denote the k x k identity matrix and 
zero matrix by Ik and Ok respectively. 

The definition of p is dependent upon the underlying block structure of the uncertainties, which 
is defined as follows. Suppose we have a matrix M E Cnxn and three non-negative integers m,, 
m,, and m c  (with m := m, + m, + m c  5 n) which specify the number of uncertainty blocks of 
each type. Then the block structure K(m,, m,, mc) is an m-tuple of positive integers 

This m-tuple specifies the dimensions of the perturbation blocks, and we require Cgl k; = n 
in order that these dimensions are compatible with M.  This determines the set of allowable 
perturbations, namely define 

Note that XK E CnXn and that this block structure is sufficiently general to  allow for (any com- 
bination of) repeated real scalars, repeated complex scalars, and full complex blocks. The purely 
complex case corresponds to m, = 0, and the purely real case to m, = m c  = 0. 

Note also that all the results which follow are easily generalized to  the case where the full complex 
blocks need not be square, and the blocks may come in any order. We make these restrictions in 
(2) purely for notational convenience. 

Definition 1 ( [ 5 ] )  The structured singular value, pK(M), of a matrix M E Cnxn with respect to 
a block structure IC(m,, m,, mc) is defined as 

pK(M) = (,$$i{a(A) : det(I - AM) = 0) (3) 

with pK(M) = 0 if no A E XK solves det(I - AM) = 0. 

In order to develop the relevant theory we need to define some sets of block diagonal scaling matrices 
(which, like p itself, are dependent on the underlying block structure). 



V K = { D ~ ~ ~ : D > O } = { D ~ ~ ~ : 8 ~ = 0 , i = 1 ,  ..., m,) (8) 

& = {block diag(G1,. . . , G,,, Okmrtl,. . . , Okm) : GP = G: E c~~~~~ 1 (9) 

We introduce one further piece of notation. Suppose M E Cnxn has an eigenvalue X with right and 
left eigenvectors x and y respectively. Then partition x and y compatibly with the block structure 

where xri, y,, E cki, xci, yci E ckmrti, XC,, yc, E Ckmrtmcti. These will be referred to as the "block 
components" of x and y, and we define the "non-degeneracy" assumption to be that for every i (in 

the appropriate set), I Y ~ x T ~ I  # 0, IY:X~,I # 0, (~c,Ilxc,I # 0. 

3 "K haritonov-Type'' Analysis 

Before embarking on a study of the rank one mixed p problem, we first place this problem in 
context, by considering the "affine parameter variation" problem, for a polynomial with perturbed 
coefficients. This formulation of the "affine parameter variation" problem is fairly standard, and is 
taken from [lo]. 

Consider a real monic polynomial in the complex variable s, whose coefficients are affine func- 
tions of a real vector of uncertainties, k E Rm 

where ai(k) for i = 1,. . . , n are affine functions of k, i. e., there exists F E W n x m  and g E Rm such 
that 

a(k) [al(k) a2(k) . . . an(k)lT = F k  + g (12) 

Thus we can rewrite this set of polynomials as 

Since this polynomial will typically be the closed loop characteristic polynomial of some uncertain 
system, we will say that it is stable if it has all its roots in the open left half plane. We assume 
nominal stability, i. e., p(s,O) is stable. Thus in order to check robust stability we can show 
by simple continuity arguments that it suffices to check that the polynomial has no roots on the 



imaginary axis for any k .  Assume in the following analysis that we are considering points on the 
imaginary axis, i. e. ,  s = j w  where w E R. Note that since we have nominal stability p(s, 0) # 0 
for all s = jw.  Thus we have 

Now note that we have a root of the uncertain polynomial on the imaginary axis iff for some s = jw 
and some k E Wm,  p(s, k)  = 0. This can be reformulated as 

where v E Cm is given by 

But now define the quantities A E RmXm and u E Rm by 

and we have that Au = b. Thus an equivalent condition for the existence of an imaginary axis root 
of the uncertain polynomial is given by 

1 -v*k = 0 * 1 -V*AU = 0 

t-t det(Im - Auv*) = 0 - det(Im - AM)  = 0 

where M E CmXm is the dyad M = uv*. Checking this condition is exactly a rank one p problem 
and thus we see that the "affine parameter variation" problem, for a polynomial with perturbed 
coefficients, is a special case of the rank one mixed p problem (with only real perturbations). 

It is possible to consider a number of different stability problems arising from this set-up, by 
allowing for different stability regions, and different norms to measure the size of k. We will only 
be interested in the case where stability is associated with all the roots in the open left half plane, 
and we use ]ktrn maxism Ik;l to measure the size of k .  In this case we find that we can use the 
standard definition of p, and we are required to compute the peak value across frequency of p, for 
a transfer matrix which is rank one. The treatment of other norms/regions is discussed in [4]. 

A number of different stability results have been presented for this type of problem. One of the 
strongest motivations for pursuing these problems was provided by Kharitonov's celebrated result 
for "interval polynomials" [7]. This is a special case of the above setting where one further restricts 
the uncertainty description to be of the form 

a;(k)  = a; + b;k; for i = 1,. . . , m  (20) 



where ai E R, b; E W and m = n. Thus the coefficients of the polynomial are independent of each 
other, and known only to lie within certain intervals. For this problem it was shown in [7] that 
one need only check four specific polynomials to  establish stability of the whole family. This is 
clearly a polynomial time computation, and we have restricted the problem sufficiently to beat the 
NP-hardness of the general problem. In doing so however we have placed quite severe restrictions 
on the allowable problem class, and so the applicability of the result to engineering problems is 
rather limited. 

If we consider the "affine parameter" case, then it was shown in [l] that it suffices to check 
stability of the edges of the parameter space, i. e. , we may take every element of k except one to be 
at  an extremal value of it's allowed range. Note that this requires checking a combinatoric number 
of edges, so that even this increase in the generality of the problem produces dramatic increases in 
computation. Exact results for this type of problem typically involve checking the vertices or edges 
of some polytope in the parameter space, and hence involve exponential growth in computation (see 
[12]), If one is prepared to allow a frequency search then this exponential growth can be avoided 
(see [lo]). This can also be seen from the framework we will develop here, since these problems can 
all be tackled as rank one p problems, which we will see can be easily solved. 

Thus we will find that it is possible to develop exact robust stability tests, in the p or polynomial 
frameworks, for this type of problem. Of course we must note once more that the applicability of 
this rank one p analysis is rather limited, and the fact that the general problem is NP hard 
strongly suggests that results for this case cannot be usefully extended to  the general case. This 
is the reason why the "Kharitonov-type" analysis methods do not extend to the more general 
"multilinear" or "polynomial" cases (which correspond to more general p problems), and one is 
forced to use approximate and/or iterative methods (see [ll, 161 for example). 

4 Equivalence with the Upper Bound 

This section is devoted to  proving the main result of this paper, which is that for a rank one p 
problem, the upper bound always achieves p, regardless of the block structure. A preliminary .,,,,.,, ,C +L:, ,,,..I+ -..,, -- --.--.. r i  A I  ---L--- - J J : L : - - - I  - - -  
vGLn;"Il "I rula Icault, Wa3 ~ I V V ~ ~ A L  in LA-J ,  wuele ~ U U I C I U I L ~ ~  r~bbumpiiu~~s were imposed to  make the 
proof fairly simple. Here we will not make any such assumptions on the problem, and it turns out 
that this makes the proof substantially more difficult. First we recall the mixed p upper bound 
from [6], stated here in a slightly different form. 

Theorem 1 ( [ 6 ] )  For any matrix M E Cnxn ,  and any compatible block structure IC, suppose a, 
is the result of the minimization problem 

a,= DEDG inf [min{a:(M*DM+j(GM-M*G)-~D)<o}] ~ E R  

G€ GG 

then an upper bound for p is given by 

Note that this upper bound is a convex minimization problem so that we can compute the global 
minimum, and algorithms for this computation have been developed (see [17, 21). 



Theorem 2 Suppose we have a rank: one matrix M E Cnxn,  then for any block structure, IC, 
p K ( M )  equals its upper bound from theorem 1. 

This theorem gives us the means to compute rank one p problems exactly, since it says that it is 
equivalent to  consider the upper bound problem, which is convex (in fact we will see later that 
it is not even necessary to  resort to convex programming methods to  solve this problem). Before 
tackling the proof of this theorem, we need a few preliminary results. 

Lemma 1 Suppose we have matrices A E Cnxn and B E CnXn,  with A 5 0. Define S = { x  E Cn : 
x*Ax = 0,Ixl # 0). Then we have that A + t B  < 0 for suficiently small 0 < t E R i f l  either S = 0, 
or x*Bx < 0 for all x E S .  

Proof: (+) Since we have that for all x # 0 

with t > 0, then iffor any x # 0 we have x*Ax = 0, for that x we must also have x*Bx < 0. 

(t) If S = 0 then A < 0, and so A + t B  < 0 for sufficiently small t > 0 by a simple continuity 
argument. Suppose instead that S # 0, but x*Bx < 0 for all z E S. Define s = S n B where 
B = { x  : 1x1 = 1) .  Then s c S is compact and so by continuity there exists a set V > 3, which is 
open in B, with x*Bx < 0 for all x E V. Thus we have 

for all x E V, for any t > 0. If B\V = 0 we are done immediately, so assume B\V # 0. Now B\V is 
compact and so both x*Ax and x*Bx achieve maxima on B\V. Suppose we have 

max x*Ax = -a 
XEB\V 

max x*Bx = p 
XEB\V 

with a > 0 since B\V n s = 0. If p < 0 then x * ( A  + t B ) x  < 0 for all x E B\V for any t > 0 and 
we are done, so assume p > 0. Then we have 

a x*(A + t B ) x  = x*Ax + tx*Bx 5 -a + tP < 0 f o r  t < - 
P 

Thus we have x* (A  + t B ) x  < 0 on B\V for sufficiently small t > 0. Combining this with our earlier 
result we have that for sufficiently small t > 0, $*(A  + t B ) x  < 0 for all x E B, or in other words 
A + t B < O .  

Lemma 2 Suppose we have a rank one matrix M = uv*, with U ,  v E Cn,  and a block structure I C .  
Then there exists a sequence of matrices Dj E V K  such that the following is true: 

1. Define uj G Dju, vj 2 Dj-lv and the following limits exist: 

- lim u3 = u 
j-+w 

- lim v3 = v 
j+w 



2. Partition u,v,%,V compatibly with the block structure as in  (10). Then we have that the 
following is true: 

-* - uTiu,,=v,*iuT, f o r  i = 1 ,  ..., m, 
-* - u c i ~ c , = v ~ i u c i  f o r  i = 1 , . . . , m c  (24) 

-* 
uc, AECi = v&Auci f o r  i = 1,. . . , mc f o r  any A E ~ ~ ~ r + ~ c + ~ ~  kmr+mc+i 

3. With this notation we also have that 

2 - -  2 I = 1 ,  - U ,  f o r  i = 1, . . . , mr 
2 I ~ ~ % c i l = l ~ c i l  =IaCic;l2 f o r  i = l 7 . . , , m C  

Ivc, I luc, I = IVci ( 1 % ~ ~  ( = [VC, l 2  = 1 % ~ ;  l 2  f o r  i = 1, . . . , mc (25) 

4. Define M j  & ujvj* and the following limit exists 

5. We have M = T i  8*, with p K ( z )  = pK(M). 

Proof: Consider first the repeated real scalar blocks, i. e. , u,,, v,, for i = 1,. . . , m,. Suppose first 
that for some i in this range we have that Iv~u , ,  I # 0. Then we have 

for some y ,  0 E R with y > 0. Thus we have that 

and so by lemma 4.2 from [9j we can conciude that there exists D; = DT > 0 such that 

Choose 03 = D; for all j and so for this block we have for all j 

and furthermore 
Iv,uril = ~u;~e-j@u,~(  = I u ; , D J ~ v , ~ ~  = I D ; ' v , , ~ ~  = Iu:,I2 

Finally note that 

u:*ujri = D;uTi = v: u,, 

For this block then properties 1,2,3 all hold. 
Now suppose that for some i 5 m, we have I v:, uTi 1 = 0, or in other words vTi orthogonal to u,; 

(if we have lv,, ( = 0 and/or JuTi ( = 0 then see the treatment for the full complex blocks later). Thus 
we can choose a Hermitian positive definite matrix Di with uTi as an eigenvector corresponding to 



the smallest eigenvalue of D:, and v,, as an eigenvector corresponding to  the largest eigenvalue. 
Now simply choose such D: with 

- 
X ( ~ f ) l o o  as j l o o  

( D )  0 as j 1' oo 

and we have that 

so that properties 1 ,2,3 hold once more. The treatment for the repeated complex scalar blocks 
(i. e., u,,, v,, for i = 1,. . . , m,) is identical. 

Now consider the full complex blocks, i. e. , uc,, vc, for i = 1, . . . , mc.  First consider a block 
where (for some i in the appropriate range) lvc, Iluci 1 # 0. Choose the scalar d; as 

and choose Di  = diIkmr for all j. Then for this block we have that 

and furthermore for any 4 E ~ ~ m r + m c + i  lcmr+mc+i we have 

Note that this implies 
Iv&;llu'c,I = lvc,IIusl 

so that properties 1 ,2,3 all hold for this block. 
Suppose now that for some i we have IvC,l(uGil = 0, and hence luc,J = 0 and/or lvcil = 0. If 

both are zero simply choose D: = Ikmrtrnc+, for all j, and it is easy to check that properties 1,2,3 
all (trivially) hold. If not then choose Dq = d~Ikmr+mc+, where d i  is chosen to satisfy 

In either case we have that 

1 lirn Iv&, I = m c 1 = 0 
j-iw 

lim lu&, 1 = limj,, ldiuc, 1 = 0 
j+w 



so that properties 1 ,2 ,3  hold once more. Thus stacking up the blocks we have constructed we 
obtain our D j  E DK satisfying properties 1,2,3. 

Now note that 
~3 & u3vj* = ~ j ~ ~ * ~ j - l  = D ~ M D ~ - 1  

is a product of convergent sequences, uj and vj, and hence converges, so we have property 4. 
Furthermore by standard properties of limits we have that M = ?I 8". Note finally that employing 
properties 1 ,2,3,4 we obtain that for any A E XK 

= det(In - A M )  

and hence pK(M) = pK(M), which is property 5. 

Remarks: Note the the sequence of matrices D j  E VK satisfies the following: 

lim T(D~MD~-')  = T ( Z )  = 181 = Izl2 
j+oo 

This final expression is exactly p for the associated complex p problem. Therefore this lemma 
proves that complex p equals its upper bound for rank one matrices (which is well known), and in 
the process we explicitly constructed the sequence of scaling matrices that does the job. Thus the 
sequence DJ E Vx: is exactly the optimal scalings from the upper bound of the associated complex 
p problem. 

Note that this lemma provides us with a p invariant transformation from M to  X. The point of 
carrying out this transformation is that property 3 implies that the vectors Ti, ti of the dyad are 
perfectly balanced in the sense that each sub block of E has the same norm as the corresponding 
sub block of 8. Consequently we have that for each sub block of 7i and 8 we either satisfy the non 
degeneracy assumptions, or the corresponding sub blocks of ?!i and 8 are both identically zero. 

Theorem 3 Suppose we have M = uv* with u, v E Cn, and a compatible block structure I C ,  with 
pK(M) > 0. Partition u, v with respect to this block structure, and assume that for each sub block 
of u and v we either satisfy the non degeneracy assumptions, or the corresponding sub blocks of u 



and v are both identically zero. Then there exist matrices Q E QK and Q E QK with 

1 if i = j 5 mT and Qij = 0  
Qij = 

j otherwise 

together with matrices DR E VK;, DR 2 0 and DI E GK, and a real scalar $J E (--z ;) such that 

with 0  < v*Qu = pK(M). 

Proof: The proof of this theorem is essentially an application of the same machinery used to prove 
theorem 2 in [15]. First suppose that pK(M) = 1. Then by theorem 1 in [15] there exists Q E QK 
with pR(QM) = 1. Since we may absorb a factor of f into Q we may assume that the eigenvalue 
achieving pR(Q M )  is positive. But note that this implies 

0 = det(I, - QM) = det(I, - Quv*) = 1 - v*Qu (37) 

and hence 0 < v*Qu = 1 = px(M). 
Since M is rank one, so is QM,  and hence Q M  has at  most one non-zero eigenvalue (not 

repeated). Thus the eigenvalue at one is distinct and furthermore we have that 

QM(Qu) = Quv*Qu = (Qu) 
v*QM = v*Quv* = v* 

Since Qu and v are both non-zero this implies that they are the right and left eigenvectors of 
Q M  corresponding to the unity eigenvalue, and furthermore they are normalized with v*(Qu) = 1. 
Since this eigenvalue is distinct we can differentiate i t ,  and applying the machinery from [15] to 
M G Q M  we can derive that the following relations hold 

~e(e~*~;Tv;,u,,) 2 0  , i = 1,. . .,m, 

~e(e~*~rv; ,u , , )  = 0  , if i 5 m, and Jqrl < 1 
j* c * e q;vc,uc, ~ [ O o o )  , i = l  , . . . ,mc  

C C Re(ej*v& G; Q; UC,) 5 0  , for all G;C E ~ 3 ~ m r t m c t i X ~ m r t m c t i  

with G? + GQ* i: 0, i = 1,. . . , m c  (39) 

for some II, E (-$ z) .  Now we may apply lemmas 4.1 and 4.2 from [9] t o  each sub block to  obtain 

vT. = ej?LejOi T 
T T  

a q;D;uri , O <  D; = D f ,  di E [-- - i < m T  and Iq;TI = 1 2 21' - 

VT. = ,j*,jei T 
I q,D;uTi , O <  Di = Df,  0; = f-, i s  mT and 0  < Iq;Tl < 1 2 

T 
V = e * e 0 ~ ; u T ,  , 0  < D; = Df, 0; = f -, i 5 mT and lq;TI = 0  

2 
v,, = e j * q ~ ~ m r + ; ~ c ,  , O <  Dmrfi i =  1 ,..., m, 

vc, = ej@d;@uci , 0  < d; E R, i = 1,. . . , mc.  



Note that in order to apply these lemmas we need to assume that the non-degeneracy assumptions 
are satisfied for that sub block. However we have assumed at the outset that u, v either satisfy the 
non-degeneracy assumption for a given sub block, or have both sub blocks of u and v identically 
zero, in which case the above relationships hold trivially. Applying this argument to v and Qu we 
get that the above relationships hold for every block. The only case where this argument breaks 
down is for the repeated real scalar blocks with qz = 0. For these blocks however we can show that 
the above relationships hold by a simple geometric argument. 

All that remains now is to define the appropriate quantities. Define Q E QK directly from 
Q E QK via (35). For i 5 m, note that 

so that we may split each scaling matrix as 

For the complex blocks we simply define 

D ~ r n r + i  = Dm,+; for i = l ,  ..., m, 

dRi = d; f o r  i = l ,  ..., mc 

Now stack these definitions up to define DR E @K; and DI E GK;. Since for each 0; we have that 
0; E [ -5  $1, it follows that cos(0;) 2 0 and hence DR 2 0. It is now easy to verify that with these 

definitions the relationships in (40) may be written in matrix form as v = & ( D ~ Q  + ~ D ~ Q )  u. 

This proves the result for pK(M) = 1. The result for pK(M) > 0 follows immediately from this by 
simply scaling u so that pK(M) = 1, applying the result for pK(M) = 1, and then reabsorbing the 
scaling back into DR and Dr. 

Remarks: Although it appears at first sight as a rather unmotivated mathematical abstraction, we 
will see that in fact this alignment condition between v and u is the key to the equivalence between 
p and it's upper bound. Note aiso that we have such an alignment for any Q E QK achieving a 
local maximum of pR(QM) over Q E BXK with pR(QM) > 0. This follows since we we derived the 
alignment condition simply from stationarity conditions, and did not use the fact that pR(M) is 
the global maximum at all. 

Note that the conditions on u and v assumed in theorem 3 are exactly those guaranteed for the 
transformed vectors in lemma 2. Thus by first transforming the dyad as in lemma 2 we can show 
that (for the transformed dyad) we always have an alignment condition as in theorem 3, without 
requiring any type of non-degeneracy assumptions (except that prc(M) > 0). 

We are now in a position to combine these results to prove the main result. 

Proof of Theorem 2: We will consider separately the cases pK(M) > 0 and pK(M) = 0. First 
suppose that pK(M) > 0 and for the moment further assume that in fact pK(M) = 1. Carry out the 
transformation of lemma 2 to define ti, v, z with p ~ ( z )  = 1. Now a, 5, satisfy the assumptions 
of theorem 3, so we may apply this theorem to conclude that we have matrices Q E QK and 
Q E QK with $ as in (35), together with matrices DR E 2)~; '  DR 2 0 and DI E GK, and a real 
scalar II, E (-$ $) such that 

= Jq ( D ~ Q  + j ~ ~ $ ) a  (43) 



with ii*Q;iS; = 1. Note that this implies 

and hence 
;~s;*Q*D~QZ - ~Z*Q*D~QE = I?* = cos($) + j sin($) 

Now we have immediately that 0 < Z*Q*DRQZ E W and furthermore 

so that ;~s;*Q*D~Q;~s; E R as well, and hence by comparing real and imaginary parts in (44) 

Define E GK: as G & -D&, and substituting DR and G into the upper bound expression we 
obtain 

- 
M * D ~ =  + ~ ( G Z  - =*G) - DR 

- ii;iS;*DR;iS;ii* + j ( -DI~ i iV*  + i i ; i ~ ; * ~ ~ ~ )  - DR - 

= -5 i i*(n*DR~) - DR + DRQZ ii* + 'i;T E*Q*DR (46) 

where we have made use of the substitution -j D ~ Q Z  = -e-j*ii + DRQZ and (45). Thus for any 
q E 43" we have that 

Now note that we get equality (to zero) in (47) iff 

where x E Ker(DR), because DR 2 0. But this implies 

and hence 8*x = 0. From this it is easy to check that 

q = (T*q)Q;il+ x t--t q = aQE + x for some a E C. 

To summarize, we have shown that 

with equality iff q is of the form 
q = a Q ? i + x  



for some a E C and x E Cn with DRx = 0 and 8*x = 0. Now define D A DR+tIn, where 0 < t E R 
will be chosen later, and note that for t > 0, D E VK. Now choose any E > 0 and we have that 

We wish to  apply lemma 1 to  (51). Note that since we have 

we immediately have that A < 0 ,  and furthermore q*Aq = 0 iff 

From our earlier results this implies 
q = a Q i i + x  

with DRx = 0,  8*x = 0,  and q * D ~ q  = 0. But since DR > 0 this implies that q E I<er(DR), and 
hence a Q u  E I{er(DR). Now note that this gives 

Since $ E (-; ;) we have cos($) > 0,  and so this expression vanishes iff a = 0. Thus we obtain 
q = x and so we have 

q*Aq = 0 t--t DRq = 0 and 8*q = 0 

Now note that for such q we have 

q*Bq = q* (~*z- ( l  + € ) I n )  q 

= q* ( B  ii*u B* - ( 1  + € ) I n )  q 

= - ( I +  ~ ) 1 ~ 1 ~  < 0 for q # 0 

Thus applying lemma 1 we have that for sufficiently small t > 0,  A + t B  < 0 and hence choosing 
such a t we obtain 

Z * D ~ + ~ ( G ~ - ~ * G ) - ( ~ + E ) D  < 0 (53) 

with B E VK: and G E GK. It now remains to  unwrap the transformation from M ,  to  recover the 
result for M .  Recall from lemma 2 that we have a sequence Dj E VK such that 

Since this implies that we may choose Dj E VK so that DjMDj-' is arbitrarily close to M ,  by 
continuity we may choose Dj E V K  so that 



Since D j  > 0 we may multiply both sides of this expression by D j  without affecting the definiteness 
to  yield 

M * ( D ~ D D ~ ) M  + ~ ( ( D ~ G D ~ ) M  - M * ( D ~ G D ~ )  - (1 + E ) ( D ~ D D ~ )  < 0 (55) 

so that defining D A D ~ D D ~  and G A D ~ G D ~  we have 

with D E DK and G E GK. But this shows that the upper bound achieves where E > 0 was 
arbitrary. Thus by taking the infimum we find that the upper bound gives 1, which by assumption 
equals pK(M). This proves the result for pK(M) = 1. The extension to  pK(M) > 0 is easy. 
Suppose pK(M) = P > 0. Then pK($f) = 1 so we may apply this result to obtain, for any i > 0, 

D E DK and G E GK such that 

Now given any r > 0 choose O = (1 + $)2 - 1, and choose D, G as above. Then this expression gives 

so that defining D I D and G PG we obtain 

with D E VK and G E GK, and hence by the same reasoning as before this implies that the upper 
bound achieves P, which by assumption equals pK(M). This proves the result for pK(M) > 0. 

The only case we have left to  deal with is when pK(M) = 0. This case is not covered by the 
previous analysis since in this case there is no destabilizing perturbation (Q E QK). Start first by 
employing the transformation to in lemma 2. If ~ ( x )  = 0 we are done, so assume not, i. e., 
1 ~ 1  I T I  f 9. Nete i=.,mrdiate!y that all the complex blocks must be zero, 

(Zci(=IVc,l=O for i = l ,  ..., m, 

IIIcil =  IT^,^ = 0 for i =  1, ..., m c  

else we could find Q E QK with pR(QM) > 0 simply by choosing all the real perturbations to be 
zero, and appropriate complex perturbations. Furthermore it is easy to check via a simple geometric 

-* - v u,.. 
argument that for every non-zero repeated real scalar sub block, the quantity must be the 

vri uri I 
same modulo f ,  (for i = 1,. . . , m,), and this quantity cannot be purely real. If this were not 
so then once again we could find Q E QK with pR(QM) > 0. These conditions are equivalently 
expressed as . . 

-* - v,, uTi = yie-J*e-JSi for each i 5 m, with lV:,T&., 1 # 0 (59) 

where for each i we have Bi = f 5, 0 < y; E R, and $J E (-; 5).  Thus applying lemma 4.2 from [9] 
to each of these blocks we have 

- . . 
vTi = dQe'Di?i,; for each i j m, with I&,ZTil # 0 (60) 



where for each i we have 0 < Di = Df.  Stacking these relationships up we obtain DI E GK such 
that 

?? = j d * ~ ~ ~  (61) 

Note that for the zero sub blocks of 'ii and ?? this relationship holds trivially, and for the non-zero 
sub blocks it follows from (60). Now choose DR = 0, and G = -DI. Note that DR E VK, DR > 0, 
G E GK, and for any0 < E E R we have 

where we have used the substitution jDIii = e-j*??. Now define D G DR + tI, = tI,, where 
0 < t E R will be chosen later, and note that for t > 0, D E VK. Then we have that 

By our earlier results A 5 0 and furthermore we have 

with equality iff %*v = 0 (since cos($) > 0). For such q we have that 

Thus applying lemma 1 we obtain that A + t B  < 0 for sufficiently small t > 0. Choosing such a t 
we have that - ..- 

M*DM + j ( G Z  - Z * G )  - ED < o (66) 

with D E DK and &' E GK. Now we can unwrap the transformation in lemma 2 exactly as before 
t o  obtain D E VK and G E GK satisfying 

But this shows that the upper bound achieves 4 where E > 0 was arbitrary. Thus by taking 
the infimum we have that the upper bound achieves 0 which by assumption equals pK(M). This 
concludes the pK(M) = 0 case, and combining this with our earlier result for pK(M) > 0 the 
theorem is proved. 



5 Additional Properties 

Note that this proof is substantially more involved than the one given in [14], where additional 
simplifying assumptions were made. Note however that this is a constructive proof, and so it 
actually gives us quite a bit more information about the rank one problem than we obtained with 
the earlier result. We are able not only to say that the upper bound achieves p, but to explicitly 
construct the D , G  scaling matrices that do the job. This allows us to  examine the properties 
of these scaling matrices as a function of the problem data, and to arrive at  several interesting 
conclusions. 

First note that the construction of the optimal sequence of D , G  scaling matrices was based 
on employing the "p-values" construction from [14]. Note that theorem 3 holds for any of the 
"p-values" (see the remarks following theorem 3). To be more specific this means that given any 
Q E ex;- achieving a local maximum over Q E BXK of pR(QM), with pR(QM) = ,L? > 0 then 
we can employ the machinery of lemma 2, and theorems 2 and 3, to  construct ( a  sequence of) 
D E VK, G E GK verifying that px;-(M) 5 P. But since we already have /3 = pR(QM) < pK(M) 
this gives pn(2\4) = p. Thus we find that for the rank one problem any non-zero local maximum 
of pR(QM) (as defined above) is global. We state this as a theorem. 

Theorem 4 Suppose we have M = uv*, with u, v E Cn, and a compatible block structure I C .  
Further suppose we have Q E QK such that pR(QM) = ,L3 > 0 is a local maximum of pR(QM) over 
Q E BXx. Then ,L3 = pK(M). 

This offers further insight into why the rank one problem is easy. For the general problem we do 
not have any such guarantees about local maxima, and in fact one can easily construct problems 
with local maxima that are not global. 

In fact we can characterize the solution to the rank one p problem in terms of this alignment 
condition. 

Theorem 5 Suppose we have M = uv*, with u, v E Cn satisfying the non-degeneracy assumptions, 
and a compatible block structure K .  Further suppose we have Q f QK with qf # 0 for i = 1,. . . , m, 
such that pR[QM) = > 0. Then we have P = pK(M) ifl there exists D E vK- with 6 = f 5 for 

Iqzl < 1 and E (-2 ;) such that 
v = J*DQ, (68) 

Proof: (4) Note that as in the proof of theorem 2 we can show that Qu and v are the right and left 
eigenvectors of Q M  corresponding to the distinct eigenvalue /3, with v*Qu = /3. Since /3 = pK(M) 
we are at  a local maximum by assumption and the result follows from theorem 2 of [15]. 

(t) Again we have that Qu and v are the right and left eigenvectors of Q M  corresponding to the 
distinct eigenvalue P, with v*Qu = P. But now for each i < m, we have 

so that defining DR E VK, DR 2 0 and DI E 6x;- by 

DRi = cos(0;)D; and DIi = sin(0;)D; for i = 1, . . . , m, 

DR,,+' = Dm,+i for i = 1,. . . , m, 

d~,,+,,+, = dm,+m,+i for i = 1, . . . , mc 



we have v = d*(DR + jDI)Qu as in theorem 3. From this alignment we can construct (a sequence 
of) D E V,, G E GK showing that pK(M) 5 /3 (as in theorem 2) and hence /3 = PK(M). 

Roughly speaking this theorem says that Q achieves p iff it aligns v and Qu (as above). This is 
employed in [13] to  develop a lower bound power iteration to  compute a lower bound for pK(M) for 
general mixed p problems. Note that for this theorem we added some technical assumptions. These 
can once again be dealt with via the machinery of lemma 2, but since the main use of this theorem 
is for the lower bound power iteration in [13] we do not bother with this added complication. 

Recall that we remarked earlier that we can solve for the D,  G scaling matrices in the upper 
bound without resorting to actually solving the associated convex optimization problem. In order to 
do this however we need to  know the value of pK(M), and the associated destabilizing perturbation 
Q E QK: (if there is one). In the following section we will see that in fact we can obtain both of 
these quantities in closed form, so that we have a complete solution to the rank one p problem in 
closed form. Thus we can easily compute all the relevant quantities without ever having to resort 
to  numerical solution of an optimization problem. 

6 A Graphical Interpretation 

It  is interesting to consider a graphical interpretation of the rank one mixed p problem, in the 
complex plane. Suppose that we have M = uv*, with u,v E Cn, and some compatible block 
structure I C .  Then note that for any A E BXK and 0 < a E R we have that 

A M  
det(In - -) Q = 0 t--t det (a In  - A M )  = 0 

This equation forms the basis of our graphical interpretation. If we think of the components, 
6 ~ u ~ , ~ i i r i ,  S ~ . L ' ~ U ~ , ,  v ~ . A ~ u c i ,  as vectors in the complex plane, then the rank one mixed p problem 
simply amounts to choosing 6;, 6f, A? so that these vectors add up to a positive real number, 
which is as large as possible. Note that it is now evident that we do not affect the problem if we 
throw away the degenerate blocks (with lvXuri I = 0, or I v ~ u c i  I = 0, or IvCi I (uci 1 = 0). 

First of all it is clear that, since the complex perturbations can have arbitrary phase, we will 
always wish to choose lSfl = 1 and ~ A C )  = 1 so that these vectors have their maximum length, 
namely 

Furthermore it is also clear from the geometry of the problem that in fact we will wish to align all 
these vectors, so as to make one vector of maximal length whose phase we are free to choose. Thus 
we may take $ci = q5 and $ci = $ (with appropriate ranges for i), and so we have 



where we have one free parameter, +, left to choose for the complex blocks. Note that it is easy to 
choose St and AQ so that we satisfy (71). With this observation denote 0 5 LC E R as 

and the rank one mixed p problem reduces to choosing real numbers Sf E [-1 11 and .II, E [-n n] 
so as to maximize 0 < a E R where 

The solution to this problem can be obtained geometrically, by thinking of (73) as a vector sum in 
the complex plane. See figure 1 for an example illustration with three real blocks (and any number 
of complex blocks). Note that having chosen the values of 6: then it is easy to choose .II, so as 

Figure 1: Graphical solution of the rank one mixed p problem 

to maximize a,  or alternately to verify that no + exists to make the summation in (73) add up to 
a real number. The real question then is how to choose the values of 6;. Consider the following 
algorithm (some of the key ideas for this approach are from Newlin [8]). 



Algorithm 1 (Rank One p Solution) 

1 Choose starting values for the real perturbations as 6; = Sgn(Re(v;uTi)). Then for all 6; we 
have ~e(6;Tv;,u,~) > 0. Now compute 

S = Sgn Imag x 61v,uT, ( (1 )) 
2 Rank all the components 6;v;,uT, by argument, so that the highest rank is assigned to the 

greatest value of ~rg(S6;Tv; uTi ). 

3 Consider the highest rank component which has not yet been looked at. Compute Sopt, which 
is the optimal value of this S;T, for bopt E W unrestricted in  sign or magnitude, and all the 
other real perturbations fixed. 

4 If sgn(Sqt) = -sgn(S;) and ISOptl > 1 and not all the components have been looked at, then 
set F = 1, else set F = 0. Now reassign 6; with max[-1 min[l 6opt]]. 

5 If F = 1 then go to step 3. 

6 For these values of 6; compute the optimal value of $, and hence pn(M) and the destabilizing 
perturbation Q E QK: (if there is one). 

This algorithm guarantees to compute p exactly for a rank one mixed p problem, together with 
an optimal destabilizing perturbation Q E QK (if there is one). The reasoning behind this algorithm 
is simple if one thinks of the problem geometrically. The objective is to make the summation 

add up to  a. r e d  nilmher which is as large as possible. First of A1 m e  cheeses the perturbatims, "i AT 9 

so that the real parts of each component, S;v,*,uT,, are nonnegative. Then consider the summation 

to  which we must add the complex component, ~ * L c ,  so as to make it add up to  a real number. 
Suppose the imaginary part of the summation in (74) is nonnegative (symmetric arguments apply 
for the other case). Then we consider the component S;Tv,*i u,, with the largest argument. This 
component is ranked the "worst" component in the summation, in the sense that it contributes the 
most positive imaginary part (which we have too much of) for a given positive real part (which 
we want). Then we compute the optimal value, Sopt, for this parameter, 6; (with all the other real 
perturbations fixed), and reassign 6; with the value of bopt, clipped to  the interval [-1 11. If Sopt 
is not both of opposite sign to the original value of 6[, and greater than one, then it says that 
you could not improve the summation by further reducing the imaginary contribution from this 
component, 6fv,*,uT,. But this component had the "worst" ratio of imaginary to  real contribution, 
so you could not improve by changing any other component, and hence you are done. If the above 



condition is not met then you could get further improvement with this component so you check the 
next rank component, until you meet the condition or you have checked them all. In this way you 
proceed with at most a linear search over the real parameters to obtain the optimal values for all 
the real perturbations, 64. Given these, then it is easy to compute the remainder of the solution. 

It is easy to verify that the computation of SOpt in step 3 and + in step 6 boil down to just 
simple trigonometry. It can also be verified that we always have + E (-f f )  and denoting by 0; 
the angle between P S L ~  and 64v:,uri, then 6; E [-q f 1. Furthermore if 1641 < 1 then 0, = 6;. 
But now if we examine the vector summation in figure 1 then we see that this solution is exactly 
the alignment condition derived in theorem 3. From the geometric viewpoint it is now clear why 
this alignment must hold at the maximum of pR(QM). 

Note that algorithm 1 requires at most a search over the real parameters, which grows linearly 
with m,. All the computations required can be performed via simple trigonometry, so that this 
algorithm is really a shorthand notation for the closed form solution to the rank one mixed p 
problem (which would otherwise be cumbersome to write, involving a "max" over m, possibilities). 
Thus we have a closed form solution, with trivial computational requirements, for both pK(M) and 
the associated Q E QK. 

The fact that the graphical solution to the rank one p problem is so simple, really lets us see 
what is going on with the problem. As an illustration of this we immediately obtain the following 
theorem. 

Theorem 6 Suppose we have M = uv*, with u, v E Cn, and a compatible block structure K .  Then 
in computing pn(M) it sufices to consider perturbations A E XK with at most one of the real 
variables, Sj having (&[I  < 1. 

Proof: Note that algorithm 1 starts out by assigning all the real variables at extremal values. It 
can be seen from steps 4 and 5 that the algorithm quits if ever any variable is reassigned internally. 
Since algorithm 1 guarantees to find pK(M) we find that an optimal destabilizing perturbation can 
be found with at most one real variable internal. 

This is the mixed p cmnterpr t  of the we:: known "edge iheureiii" [I] for the Laifhe parameter 
variation" case for a polynomial with perturbed coefficients (see section 3). Note that the result 
holds for pure real or mixed p problems. Once again the reason for this result is clear when we 
look at the problem geometrically: if we have more than one variable internal then we can always 
increase one of them (in magnitude), and compensate with the other so that the summation (73) 
stays real and does not decrease. We simply do this until all but one (or none) of the real variables 
is at its extremal value. 

In fact if one considers the geometry of the problem, then it is possible to state a slightly 
stronger version of this "edge result": aside from cases where we have real degenerate blocks (with 
IvXuPZI = 0 ) ,  or real blocks with the same phase modulo 6 (i. e. ,  Arg(~:~u,,) = Arg(~:~u,,) or 
Arg(v;T;u,,) + n for i # j ) ,  then the only optimal destabilizing perturbations are on the edges. 

Note that an exact expression for pm(M) with M rank one was also obtained in [4]). The 
authors were then able to take this result and solve several problems from the literature, noting 
that these problems can be treated as special cases of rank one p problems. 

Thinking about the rank one p problem graphically makes it easy to construct examples with a 
particular value for plc(M), and particular properties for the alignment condition at the maximum 
of pR(QM). To conclude we present a series of such examples which illustrate certain facts about 



p and rank one problems. These facts may not be obviously true (or false) from the definition of 
p ,  but are immediately clear when one considers the graphical interpretation for the corresponding 
rank one example. 

Fact 1: For a rank one mixed p problem, it is  not generic that the worst case perturbation is 
on  a vertex. Consider the following example: 

with ST E R and SC E 43. Then it is easy to  see that the worst case perturbation is ST = 0, SC = 1. 
This has ST internal, and this property holds for small perturbations to the problem. 

Fact 2: For a rank one mixed p problem, it is not generic that the worst case perturbation is 
not on  a vertex. Consider the following example: 

with ST E R and SC E 43. Then it is easy to see that the worst case perturbation is ST = l , S C  = 1. 
This has ST at a vertex, and this property holds for small perturbations to  the problem. 

Fact 3: For a rank one pure real p problem, it is  generic that the worst case perturbation is 
not on  a vertex. This follows by noting that given any summation as in (74), then we can perturb 
the components by an arbitrarily small amount so that the summation cannot be made purely real 
with every Sf = f 1. 

Fact 4: For a rank one pure real or mixed p problem, with at least two uncertainty blocks, it 
is  generic that prc(M)  > 0. This follows by noting that for any problem with at least two blocks 
we can perturb the components by an arbitrarily small amount so that the summation (73) can be 
made real and positive. 

Fact 5: One can have p problems, where the worst case perturbation has all the real variables 
internal, or even zero. This follows from the example given in fact 1. 

7 Conclusion 

It has been shown that the "affine parameter variation" problem for a polynomial with perturbed 
coefficients can be recast as a rank one mixed p problem. This setting forms the basis for a number 
of "Kharitonov-type" exact robust stability tests with respect to real parametric uncertainty. This 
rank one mixed p problem has been shown to be equivalent to  its upper bound, which is a convex 
problem. This enables exact computation in the p framework as well, and in fact a closed form 
solution to  the rank one p problem was obtained with trivial computational requirements. 
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